Produkt zum Begriff ICML:
-
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 37.44 € | Versand*: 0 € -
Ekman, Magnus: Learning Deep Learning
Learning Deep Learning , NVIDIA's Full-Color Guide to Deep Learning: All StudentsNeed to Get Started and Get Results Learning Deep Learning is a complete guide to DL.Illuminating both the core concepts and the hands-on programming techniquesneeded to succeed, this book suits seasoned developers, data scientists,analysts, but also those with no prior machine learning or statisticsexperience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers,Magnus Ekman shows how to use them to build advanced architectures, includingthe Transformer. He describes how these concepts are used to build modernnetworks for computer vision and natural language processing (NLP), includingMask R-CNN, GPT, and BERT. And he explains how a natural language translatorand a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples usingTensorFlow with Keras. Corresponding PyTorch examples are provided online, andthe book thereby covers the two dominating Python libraries for DL used inindustry and academia. He concludes with an introduction to neural architecturesearch (NAS), exploring important ethical issues and providing resources forfurther learning. Exploreand master core concepts: perceptrons, gradient-based learning, sigmoidneurons, and back propagation See how DL frameworks make it easier to developmore complicated and useful neural networks Discover how convolutional neuralnetworks (CNNs) revolutionize image classification and analysis Apply recurrentneural networks (RNNs) and long short-term memory (LSTM) to text and othervariable-length sequences Master NLP with sequence-to-sequence networks and theTransformer architecture Build applications for natural language translation andimage captioning , >
Preis: 49.28 € | Versand*: 0 € -
Introducing Machine Learning
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
Preis: 29.95 € | Versand*: 0 € -
Evolutionary Deep Learning
Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment.In Evolutionary Deep Learning you will learn how to:Solve complex design and analysis problems with evolutionary computationTune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimizationUse unsupervised learning with a deep learning autoencoder to regenerate sample dataUnderstand the basics of reinforcement learning and the Q Learning equationApply Q Learning to deep learning to produce deep reinforcement learningOptimize the loss function and network architecture of unsupervised autoencodersMake an evolutionary agent that can play an OpenAI Gym gameEvolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning.about the technologyEvolutionary deep learning merges the biology-simulating practices of evolutionary computation (EC) with the neural networks of deep learning. This unique approach can automate entire DL systems and help uncover new strategies and architectures. It gives new and aspiring AI engineers a set of optimization tools that can reliably improve output without demanding an endless churn of new data.about the readerFor data scientists who know Python.
Preis: 56.7 € | Versand*: 0 €
-
Ist Machine Learning bereits künstliche Intelligenz?
Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.
-
Was sind die grundlegenden Konzepte und Anwendungen der Regression in Statistik und Machine Learning?
Die Regression ist eine statistische Methode, um die Beziehung zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen zu modellieren. Sie wird verwendet, um Vorhersagen über zukünftige Werte der abhängigen Variablen zu treffen. In Machine Learning wird Regression häufig verwendet, um kontinuierliche Werte vorherzusagen, wie z.B. Verkaufsprognosen oder Immobilienpreise.
-
Was sind die Anwendungen von Deep Learning in der heutigen Technologie? Inwiefern hat Deep Learning die Entwicklungsprozesse in verschiedenen Branchen verändert?
Deep Learning wird in der Bilderkennung, Spracherkennung, autonomen Fahrzeugen und medizinischen Diagnosen eingesetzt. Es hat die Effizienz und Genauigkeit von Prozessen in Bereichen wie Gesundheitswesen, Finanzwesen und Einzelhandel verbessert. Deep Learning hat die Entwicklung von personalisierten Produkten und Dienstleistungen vorangetrieben und ermöglicht es Unternehmen, datengetriebene Entscheidungen zu treffen.
-
Wie können moderne Technologien zur Bedrohungserkennung in verschiedenen Umgebungen eingesetzt werden? Oder: Welche Rolle spielen künstliche Intelligenz und Machine Learning bei der Erkennung von potenziellen Bedrohungen?
Moderne Technologien wie Überwachungskameras, Sensoren und Algorithmen können zur Erkennung von Bedrohungen in verschiedenen Umgebungen eingesetzt werden. Künstliche Intelligenz und Machine Learning spielen eine wichtige Rolle bei der Analyse großer Datenmengen, um potenzielle Bedrohungen frühzeitig zu identifizieren. Durch kontinuierliche Weiterentwicklung und Anpassung können diese Technologien dabei helfen, die Sicherheit in verschiedenen Bereichen zu verbessern.
Ähnliche Suchbegriffe für ICML:
-
Privacy-Preserving Machine Learning
Privacy-Preserving Machine Learning is a practical guide to keeping ML data anonymous and secure. You'll learn the core principles behind different privacy preservation technologies, and how to put theory into practice for your own machine learning. Complex privacy-enhancing technologies are demystified through real world use cases forfacial recognition, cloud data storage, and more. Alongside skills for technical implementation, you'll learn about current and future machine learning privacy challenges and how to adapt technologies to your specific needs. By the time you're done, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.Large-scale scandals such as the Facebook Cambridge Analytic a data breach have made many users wary of sharing sensitive and personal information. Demand has surged among machine learning engineers for privacy-preserving techniques that can keep users private details secure without adversely affecting the performance of models.
Preis: 55.63 € | Versand*: 0 € -
Managing Machine Learning Projects
The go-to guide in machine learning projects from design to production. No ML skills required! In Managing Machine Learning Projects, you will learn essential machine learning project management techniques, including: Understanding an ML project's requirements Setting up the infrastructure for the project and resourcing a team Working with clients and other stakeholders Dealing with data resources and bringing them into the project for use Handling the lifecycle of models in the project Managing the application of ML algorithms Evaluating the performance of algorithms and models Making decisions about which models to adopt for delivery Taking models through development and testing Integrating models with production systems to create effective applications Steps and behaviours for managing the ethical implications of ML technology About the technology Companies of all shapes, sizes, and industries are investing in machine learning (ML). Unfortunately, around 85% of all ML projects fail. Managing machine learning projects requires adopting a different approach than you would take with standard software projects. You need to account for large and diverse data resources, evaluate and track multiple separate models, and handle the unforeseeable risk of poor performance. Never fear this book lays out the unique practices you will need to ensure your projects succeed!
Preis: 56.7 € | Versand*: 0 € -
Distributed Machine Learning Patterns
Practical patterns for scaling machine learning from your laptop to a distributed cluster.In Distributed Machine Learning Patterns you will learn how to:Apply distributed systems patterns to build scalable and reliable machine learning projectsConstruct machine learning pipelines with data ingestion, distributed training, model serving, and moreAutomate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo WorkflowsMake trade offs between different patterns and approachesManage and monitor machine learning workloads at scaleScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelinesDistributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.about the technologyScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure.about the bookDistributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you've mastered these cutting edge techniques, you'll put them all into practice and finish up by building a comprehensive distributed machine learning system.
Preis: 56.7 € | Versand*: 0 € -
Engineering Deep Learning Systems
Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models.In Engineering Deep Learning Systems you will learn how to:Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It's full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You'll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an excitingand lucrativecareer as a deep learning engineer.about the technologyBehind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system's platform differs from other distributed systems. By mastering the core ideas in this book, you'll be able to support deep learning systems in a way that's fast, repeatable, and reliable.
Preis: 56.7 € | Versand*: 0 €
-
Was sind die wichtigsten Anwendungen von Machine Learning in der heutigen Technologiebranche?
Die wichtigsten Anwendungen von Machine Learning in der heutigen Technologiebranche sind personalisierte Empfehlungssysteme, Bild- und Spracherkennung sowie Betrugserkennung und -prävention. Machine Learning wird auch für automatisierte Entscheidungsfindung, Predictive Maintenance und Prozessoptimierung eingesetzt. Es wird zunehmend in verschiedenen Branchen wie Gesundheitswesen, Finanzwesen, Einzelhandel und Automobilindustrie eingesetzt.
-
Was sind die wichtigsten Anwendungsgebiete von Machine Learning in der heutigen Technologie?
Die wichtigsten Anwendungsgebiete von Machine Learning in der heutigen Technologie sind unter anderem im Bereich der Bild- und Spracherkennung, der personalisierten Empfehlungssysteme und der medizinischen Diagnose. Machine Learning wird auch in der Finanzbranche für Betrugserkennung und Risikomanagement sowie in der Automobilindustrie für autonomes Fahren eingesetzt. In der Industrie findet es Anwendung in der Prozessoptimierung und der vorausschauenden Wartung von Maschinen.
-
Wie wird Deep Learning eingesetzt, um komplexe Muster in großen Datensätzen zu erkennen?
Deep Learning verwendet neuronale Netzwerke, um automatisch Muster in großen Datensätzen zu erkennen. Durch mehrere Schichten von Neuronen können komplexe Beziehungen zwischen den Daten gelernt werden. Dies ermöglicht die Erkennung von komplexen Mustern, die von herkömmlichen Algorithmen nicht erfasst werden können.
-
Wie kann Machine Learning dazu beitragen, die Effizienz und Genauigkeit von Prognosen in verschiedenen Bereichen zu verbessern?
Machine Learning kann große Datenmengen analysieren und Muster erkennen, um präzisere Vorhersagen zu treffen. Durch kontinuierliches Lernen kann die Genauigkeit der Prognosen im Laufe der Zeit verbessert werden. Automatisierte Entscheidungsfindung und schnelle Anpassung an sich ändernde Bedingungen sind weitere Vorteile von Machine Learning für Prognosen in verschiedenen Bereichen.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.